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Abstract—Consideration was given to the multiagent methods and toolkits for efficient control
of the job flows generated by the service-oriented applications. These designs were integrated
within the framework of a unique technology supporting automation of solution of large scientific
problems in the up-to-date cluster Grid whose computing nodes (clusters) can be of an involved
hybrid structure. The novelty and practical significance of the methods and tools described in
the paper lie in essential extension of the functionality of the computation control system of the
cluster Grid, as compared with the existing ones, distribution and sharing of the Grid resources
at various levels of job execution, and possibility of integrating intelligent computation control
tools in the problem-oriented applications.
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1. INTRODUCTION

Analysis of the tendencies in the construction technologies of the high-performance distributed
systems both in this country and abroad suggests the need for integration of the methods and
tools enhancing efficiency of loading the computation resources at solving large scientific problem,
comprehensive allowance for the specificity of the knowledge domains in the course of solving these
problems with the aid of user applications, and ensuring flexibility of applications use on the basis
of the service-oriented approach.

For the time being, a wide spectrum of tools for construction of the service-oriented distributed
computing environments has been developed including, for example, the general-purpose tools such
as the Amazon Elastic Compute Cloud, Google AppEngine Microsoft Windows Azure, and Manjra-
soft Aneka [1], specialized systems Globus Toolkit [2] and Unicore [3], as well as the programming
language Opa [4]. Among the domestic tools for design of the service-oriented environments, the
MathCloud system [5] and systems relying on the concept of Intelligent Problem Solving Envi-
ronment (iPSE) [6] deserve mentioning. In the systems for construction of the service-oriented
distributed computing environments, emphasis is usually made on simplification of the process of
service design. In such systems, computations are controlled using the traditional metaplanners
such as the GridWay [7] or Workload Management System [8], or with the use of specialized system
software.

The traditional metaplanners do not sufficiently allow for the specific requirements of the users
on the distributed resource. Therefore the users and administrators of the distributed computing
environments have to tackle “manually” the sometimes contradictory problem of selection and
allocation of resources by user’s specification of each of its jobs and administrator’s adjustment of
the metaplanner configuration parameters with the aim of specifying the policies concerning the
users’ resources and jobs.
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Complexity of the aforementioned problems gives rise to the need for automation and intellectu-
alization of the processes of their solution. The multiagent systems (MAS) of computation control
represent a widely used in practice approach to this problem [9]. Improvement of the quality of
control decisions is often attained in MAS by using economical mechanisms for regulation of the
demand for and the proposal of the resources of a distributed computing environment [1]. Two
basic approaches to the multiagent control of computations can be specified [11]: interaction of
MAS with local managers of the environment node resources with the aim of optimizing the use of
resources and integrating the user application with the multiagent system of resource selection in
order to enhance the efficiency of problem solution by the application.

In the former case, the use of MAS presupposes as a rule replacement of the metaplanners by
special computation control agents. Thereby, each user becomes, independently of its will, a global
user interacting with the resources of the distributed computing environment only through MAS.
This constrains the potentialities of a wide circle of local users willing to solve their problems at the
particular nodes of the environment without an “intermediary.” In the latter case, in the presence
of numerous applications of different users efficiency of the computation control systems can be
appreciably reduced owing to the competition of the application agents for the common shared
resources.

The present paper considers a MAS enabling integration of both aforementioned approaches to
control of computations in the cluster Grid-system of the computing kind having nodes (clusters)
of complex hybrid structure. The hybrid cluster comprises computing modules (hardware compo-
nents) supporting various technologies of parallel programming and differing in their computing
characteristics.

2. CONTROL OF COMPUTATIONS AT THE LEVEL OF GRID-SYSTEMS

Control of computations at the Grid-system level is realized by the MAS with a given orga-
nizational structure. The agents’ actions are coordinated using the general group behavior rules.
The agents operate in compliance with the given roles, and in the virtual community of the agents
certain rules are defined for each role. MAS includes resource allocation agents and a controlling
agent. The resource allocation agents can be united into virtual communities (VC). In various VCs
arising in the MAS, the agents can coordinate their actions through cooperation or competition.

At the level of Grid-system, the purpose of MAS is to distribute the job flows arriving to the sys-
tem so as to maintain the system operational performance within the limits set by the Grid-system
administrator. The setting represents a specification of the process of problem solution carrying
the information about the required computing resource, executed applied programs, input/output
data, as well as other necessary data. All jobs are classified according to their computational
characteristics [12]. Among the characteristics of the Grid-system performance, there is the node
economy of the Grid-system and the system itself as a whole, the mean indices of the queuing time,
the coefficients of successful completion, and the mean cost of executing jobs of various classes at
the nodes of the Grid-system and in the system as a whole. The block diagram of the computation
control system at the level of the Grid-system is depicted in Fig. 1.

This diagram shows the Grid-system as an object of control, its nodes being represented by
heterogeneous computing clusters (CC), hybrid one including. The flow w1 of the user jobs of the
Grid-system and the flow w2 of the local CC users are the external disturbances of the control
object. The results of distributions d1 and d2 of the flows w1 and w2 over CC are, respectively,
the control actions of MAS and local CC users on the control object. The vector r1 of parameters
of the administrative CC policies is the master control of the object of control. The resource
allocation agents catch the jobs of flow w1 for more detailed adjustment of the requirements on the
computing system contained in the jobs. Therefore, the flow w1 is modified into the flow w′

1. The
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Fig. 1. Block diagram of the computation control system.

distribution d1 of the flow w′
1 is done by the resource allocation agents on the basis of the economical

mechanisms controlling demand and proposal of these resources [13]. The distribution d2 of the flow
w2 is defined by the local CC users. The flows of jobs w1 and w2 are characterized by dynamism
because the power and composition of the job flow vary in time, stochasticity because the job flow
presupposes origination of random events, heterogeneity because the jobs correspond to different
classes of problems and differ one from another in their specificity, lack of feedback because the
number of jobs arriving within one time interval is independent of the number of jobs arriving
within another time interval, nonordinarity because two or more jobs can arrive within the same
time interval, and stationarity because the number of events arriving over a certain time interval
depends on the length of this interval and is independent of its start instant.

The information about the computational characteristics of the Grid-system nodes is collected
by the instrumentation of the metamonitoring complex [14] in the form of a file-oriented data
structure a. The information about the current indices of the volumes of computational work
at the executed and queued nodes of the Grid-system is also collected by the metamonitoring
complex as a file-oriented data structure b. It is assumed that there exists some abstract relation
b = F (a, r1, w

′
1, d1, w2, d2) between the components of the structure b, on the one hand, and the

computing characteristic of the nodes a, master control r1 of the control object, job flows w′
1 and w2,

and the distributions d1 and d2, on the other hand. For different components of the structure b,
this relation is representable by functional, statistical, ambiguous, or other map. In particular, for
heterogeneous nodes the volume of the same computational work is determined with regard for
the distinctions of their computational characteristics from the corresponding characteristics of the
virtual reference node of the Grid-system.

The acquired information is transmitted to the controlling agent as the vector c1 of aggregated
indices of operation of the control object at its request. The requests of the controlling agent to the
monitoring system are sent at a certain period of discreteness T1 whose value is selected so as not
to overload the computing environment of the Grid-system by information acquisition and at the
same time to fix with the desired precision the instants when the indices of operation of the control
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object approach their limit values. Part of information represented by the vector c1 and topical for
the resource allocation agents is transmitted immediately to these agents as the vector c2.

The vector r2 of the parameters of administrative policies of the Grid-system is the master action
for the control agent. On the basis of information presented by the vectors c1 and r2, with the use
of the simulation complex of the Grid-system the control agent at the preset time instants forecasts
the dynamics of the performance indices of the control object for a certain time interval. The results
of modeling are used to generate the vector u of control actions on the operational algorithms of the
agents of allocation of the VC resources by parametric adjustment of the algorithms. The following
parameters of the operational algorithm of the agent of resource allocation are the elements of
the vector u: value of penalty for “greedy” or “lazy” agents relative to the average volume of
computational work at the node represented by the VC agents and the permissible deviation from
this value. Simulation is initiated by the control agent with a certain period of discreteness T2 > T1.
As soon as the vector u of control actions is generated, it is transmitted to all VCs. The parametric
adjustment of the operational algorithms of the resource allocation agents of a particular VC is
carried out by using the established control actions with regard for the weight coefficients reflecting
the computational characteristics of the nodes of this VC.

So, let x and y be the vectors of input and observed variables of the simulation model of the
Grid-system. The observed variables are the performance indices of the Grid-system operation.
The elements of the vectors xi, i = 1, nx, and yj, j = 1, ny, have their proper areas Xi and Yj

of permissible values. It is supposed that the effects of influence of the input parameters on the
observed variables were examined in advance by the factor analysis at constructing and testing
the Grid-system simulation model [15]. It is also assumed that the Grid-system administrator
assigns to each jth element of the vector y a criterion for computation of the estimate ŷj of quality
of importance of this element (tendency of its value to the minimum or maximum on the set of
compared values) and its limit values ymin

j and ymax
j ∈ Yj. Some elements of the vector x play the

part of modified variables, make up the subset X∗, and are identified with the elements of the
vector u: uq ≡ xi, q = 1, nu, i ∈ 1, nx, 1 � nu < nx. As a rule, at solution of practical problems of
control of computations in the Grid-system, in the course of simulation it is advisable to use q � 8.
The number of values of the modified variable is determined from

⎛
⎝tm ×

nu∏
q=1

zq

⎞
⎠ /nc � T2,

where tm is the mean time of running the simulation model defined by the metamonitoring complex
on the basis of the computational history of model runs, zq > 0 is the number of modified values of
the qth variable, nc is the number of kernels of the node accommodating the control agent, nu < nc.
The basic values corresponding to the accepted by default values of the configuration parameters
of the actual computation control system (metaplanner, for example) of the Grid-system are used
as the initial values of the modified variables. The rest of the values of the modified variables
are selected from the corresponding areas of the permissible values with regard for the effects of
the modified variable on the observed variables. The value of nonmodified input variables that
are elements of the vector x are given on the basis of the corresponding numerical information
represented by the vectors r2 and c1.

Modeling simulates operation of the Grid-system by carrying out parallel multivariant calcula-
tions with the model running for each combination of the values of modified variables, and gener-
ating the set V of variants of values of the observed variables. The value of yjk ∈ Yj is an element
of the kth variant vk ∈ V for the variable yj, j = 1, ny, k = 1, nv. Choice of the subset V ∗ ⊆ V of
variants of values of the observed variables from the set V with the aim of further determination of
the values of elements of the vector u is a multicriteria process. The control agent selects variants
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for the subset V ∗ on the basis of the lexicographic method if the administrator of the Grid-system
can order in significance the observed variables or, otherwise, on the basis of the majority method.

The lexicographic method for choice of the variants of values of the observed variables uses the
following rule for multicriteria choice described in [16]:

V ∗ =
{
vk ∈ V : (∀vl ∈ V ∃p ∈ 1, ny − 1 :

(ŷ1k = ŷ1l) ∧ . . . ∧ (ŷpk = ŷpl) ∧ (ŷ(p+1)k > ŷ(p+1)l))
}
,

where

ymin
j � yjk � ymax

j , j = 1, ny, k ∈ 1, nv, l ∈ 1, nv, k �= l.

The majority method for choice of the variants of values of the observed variables uses the
following rule for multicriteria choice [16]:

V ∗ =

⎧⎨
⎩vk ∈ V :

⎛
⎝¬∃vl ∈ V :

ny∑
j=1

sgn(ŷjl − ŷjk) > 0

⎞
⎠
⎫⎬
⎭ ,

where sgn(0) = 0, ymin
j � yjk � ymax

j , k ∈ 1, nv , l ∈ 1, nv , k �= l.

Use of the aforementioned methods of multicriteria choice is due to the fact that they are less
complicated and, as compared with other existing methods for solution of such problem, from
the computation standpoint are readily realizable; and the control agent needs minimal additional
information from the Grid-system administrator.

Let a single kth variant of vk values of the observed variables be obtained as the result of
generating the set V ∗ to which the kth variant of values of the modified variables of the vector x
corresponds uniquely. By selecting among them the values xik such that xi ∈ X∗, we get the values
of the elements of the vector u. If the resulting subset V ∗ contains more than one variant of values
of the observed variables, then the final choice of the single variant vl is done randomly. For V ∗ = ∅,
the control agent generates the signal s requiring from the administrator of the Grid-system new
master controls to correct the current administrative policies of the Grid-system.

Therefore, the resource allocation agents perform control actions d1 = H(c2, w1, u) on the
Grid-system where the control action u = Q(r2, c1, y) is intended to enhance the quality of de-
cisions made by the resource allocation agents through influencing the degree of agent intentions
to execute jobs of different classes. The relations H and Q have the same nature as the considered
relation F . It deserves noting that the control object continued operation at failure of any MAS
agent, including the control one; at that only reduction in performance is possible.

At control of job flows by the resource allocation agents at the level of the Grid-system, the
time to execute individual applications may increase because these agents fail to allow for some
important features of the problem solution and user preferences for resource. In the following section
we represent new additional agent tools for planning computations and allocation of resources at
the level of applications which enable one to solve this problem to some extent.

3. CONTROL OF COMPUTATIONS AT THE LEVEL OF APPLICATIONS

Additional tools to control computations at the application level represent a virtual application
community (VAC) designed to organize in the Grid-system parallel execution of the local user
application. The main purpose of VAC is to select the least loaded CCs, activate a parallel ap-
plication, monitor and transmit to the user the results of computations. VAC comprises the user
agent, classification and planning agents, manager agent, and varying dynamically set of the local

AUTOMATION AND REMOTE CONTROL Vol. 76 No. 11 2015



SERVICE-ORIENTED MULTIAGENT CONTROL 2005

agents. The three first agents receive and classify [12] the user request, plan computations, and
generate a new—relative to the above scheme of the computation control system—job flow w3 gen-
erated relying on the user application. The flow w3 is transmitted to the manager agent carrying
out its distribution d3 to the local agents. The manager agent receives from the control agent the
information about the computational characteristics of nodes and current indicators of the volumes
of CC computational work in the form of the vector c2 required for distribution. The manager agent
is also responsible for restarting automatically the problem with new parameters (for a certain class
of problems) and monitoring of solution of the user problem. The local agents are responsible for
sending jobs to the local CC control system, analyzing the current CC state, and transmitting the
results of job execution to the manager agent.

To distribute tasks to the local agents, used is the tender model where the computational work
are used as lots, and the representative of the computing resources pretending to do computational
work, as participants. The Vickrey auction considered in detail in [13] and used to realize the
tender model enables on to reach a coordinated stable state of the auction participants by the end
of bidding, as well as to provide a better balanced distribution of the jobs of the local users of
clusters. Occurrence in the Grid-system of free resources in the course of solving the user problems
entails redistribution at the system nodes of the MAS-controlled jobs.

The user application is formed as a Grid-service. The method of generation of the application
Grid-services used below is based on a combination of the technologies of Web Services Resource
Framework (WSRF) [17] and patterns [18] of interaction with the local CC resource managers.
The instrumental environment High-performance Computing Service-oriented Multiagent System
(HpcSoMaS) Framework developed by the present authors on the basis of the listed above tech-
nologies is used to develop VAC. The instrumental environment includes the library of classes and
agent generation utilities, the pattern library to create services on the basis of the Representa-
tional State Transfer (REST) architecture [19] and the Simple Object Access Protocol (SOAP) [2];
ready-made services developed on the basis of the above libraries, specifications of service settings
in the XML, patterns for the components of exchange of the XML messages and interaction with
the local resource managers, and an instrument for generation of the description of the Grid-service
in Web Services Description Language (WSDL) [21]. To start an application in the Grid-system, a
job is generated for one of the local CC resource managers used in the system. Both the traditional
metaplanners and the local CC control systems such as the Portable Batch System (PBS) [22] or
Condor [23] can be used as such manager. Therefore, it is required to solve two basic problems
within the framework of the proposed method: (1) establish a description of the service for appli-
cation in WSDL and (2) convert the user request to the service into a computational job for the
Grid-system.

On the whole, the service enables the user to formulate problems, configure adjustment and
input of the source data for the application, obtain the results of computations, view current CC
load and acquire information messages both by the mail and WEB interface facilities. Along with
the listed above functions of system nature, in the designed VAC one can take into consideration
the possibilities specified by the knowledge domain of the user application. Examples of such VACs
are given below.

4. RESULTS OF STUDIES

A service to solve the problem of constructing the stability region in the space of two selected
parameters K and T of the controller of a closed-loop control system obeying the differential
equation dx

dt = Ax, where the elements of the matrix A depend on the parameters K and T , was
realized as the first example of using VAC. This problem comes to solving a set of independent
subproblems, that is, multivariant computations, for determination of stability of the matrix A
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Fig. 2. Example of graphic image by the service of the stability region.

with variations of values of the parameters K and T within the given ranges Kmin � K � Kmax

and Tmin � T � Tmax with the respective steps ΔK and ΔT . By varying the parameters K and T ,
constructed is a numerical grid underlying the set of subproblems. Execution of the job for solution
of each subproblem is the necessary condition for solving the original problem. The eigenvalues of
an arbitrary dense matrix are calculated using the algorithms represented in [24]. The result of
the service represents tabular data and graphic image of the stability domain. For example, the
stability region of the system

dx

dt
= Kx+ Ty,

dy

dt
= x− z,

dz

dt
= −x+ y,

−2 � T � 1, −6 � K � 0

is depicted in Fig. 2. For a more detailed description of the user work with this service the readers
are referred to [25].

A service to solve the SAT problem (Boolean satisfiability problem) by multivariant compu-
tations on the basis of decomposing the original problem was realized as the second example.
Decomposition of the SAT problem into an arbitrary number of independent subproblems whose
joint solution provides an answer to the original problem is carried out using the method of split-
ting [26]. Each independent subproblem can be solved at its node of the Grid-system. In this
case, the multivariant computations can be run in the mode of dynamic choice of resources. In
the computational experiments, used were both the existing open-licence SAT solvers and those
developed by the present authors [27, 28].

Using the WEB interface (user agent), the user formulates the problem: transmits the file with
the original Boolean function in the conjunctive normal form (CNF) and then initiates problem
solution. On the basis of the original data the user agent generates a set of subproblems and
transmits them to the computation planning agent generating a job for each subproblem. Then,
the information about the job pool is sent to the manager agent distributing jobs between the local
agents. The local agent starts one of the SAT solvers to execute the job. The monitoring agents
follow the state of each job. If additional free computing resources occur in the cluster Grid-system
and the manager agent’s job pool is empty, then the process of computations is suspended, one
of the active subproblems is removed from the processor, decomposed further, additional jobs are
generated, and computations are resumed. If one of the jobs has found solution, then, depending
on the state of execution, the rest of the jobs either are removed from solution or dequeued. If after
execution of all jobs no solution is found, then the user is informed about completion of problem
solution with the answer “unsat.”
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Table 1. Comparison of the time of solving the SAT problem at distribution of the application jobs flow
by the user (d2) and VAC manager agent (d3)

Mean time of solving
the sat-problem, s

Minimal time of solving
the sat-problem, s

CNF
Number

of variables/disjuncts
d2 d3 d2 d3

knight8 4096/491024 183.0 132.0 61.0 0.6
knight9 6561/1007 603 499.0 359.0 282.0 199.0
knight10 10 000/1 913 276 3599.0 2464.0 651.0 276.0

Table 2. Time of solution of the SAT problem obtained using hpcsat

CNF Variables/disjuncts
Time

on 256 flows, s
Time

on 1024 flows, s
rbsat-v1150c84314gyes7.cnf 1150/84314 1316 514
toughsat factoring inf.cnf 2878/15516 2147 553
gss-25-s100.cnf 31 931/96111 1985 126
b04 s 2 unknown pre.cnf 123 133/801488 2988 1640

For efficient use of the resources of Grid-system in the course of solving the SAT problem,
developed were the hybrid methods of solution using concurrently more than one programming
technologies such as the MPI technologies for organization of data exchange between the CC nodes,
OpenMP technologies (of Pthread libraries) for organization of several processor flows within the
framework of one CC node, and CUDA technologies for organization of computations on the graphic
accelerators. Methods of dynamic redistribution of the job flows were also developed for the central
and graphic processors.

Table 1 shows the results of solving the well-known Euler problem of the move of chess knight
with indication of the average and minimal times for a series of 100 runs. Table 2 presents the
results of solving a series of SAT problems with the use of the service of hybrid solver hpcsat
developed at IDSTU SO RAN. The results are given for the problems which were not solved in
5000 s by serial and parallel SAT solvers that took part in the SAT Competition13. The results
of the computing experiments suggest the following. In the first example, the application service
is intended for realization of the multivariant computations with the use of the static selection of
resources. All jobs generated by the computation planning agent must be completed prior to the
start of computations. Obviously, for the problems of this kind the advantages of VAC over the
local CC resource managers are insignificant. In the second example, the application service is
intended to realize the multivariant calculations in the mode of dynamic selection of resources. In
the course of problem solution the executed jobs may be suspended and then removed and the jobs
queued to a node of the Grid-system may be moved to other nodes of the same environment and
also new jobs may be generated. To solve the subproblems, used are both the serial and parallel
solvers. In this case, application of VAC enables one to reduce essentially the time of problem
solution as compared with the local CC resource managers owing to selection of the optimal solvers
and possibility jobs migration between the Grid-system nodes.

In both examples, the services representing VAC are realized with the use of the framework
considered in Section 3. In the first example, the specificity of the problem at hand requires that
the functions of graphic visualization of the result be included in the service. In the second example,
consideration was given to a special case of solving systems of Boolean equations, the SAT problem
for which the previously constructed Boolean model was used. In the general case, however, the
specificity of the knowledge domain described in detail in [27] was taken into consideration, first, by
complementing the VAC functions listed in Section 3 by the functions for construction, analysis, and
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rearrangement in various formats of the Boolean model, second, by indicating the mode of carrying
out the computing experiment (problem solution, testing of the solver or model) depending on which
the service requires that the user fills in various sets of parameters, and, third, by formulating a
problem (search of the first solution, k solutions or all solutions of the problem) corresponding to
the knowledge domain of the problem under consideration. In the two first cases, upon reaching
the result the incomplete jobs can be eliminated, which is done in the second example to reduce the
time of problem solution and use rationally the computing resources. Additionally, the agents can
select SAT solvers depending on the user preferences, analysis of the Boolean function structure,
and availability of the computing resources.

The computing experiments were carried out in a heterogeneous cluster Grid-system of IDSTU
SO RAN comprising the uniform CC “Blackford” with 20 computing nodes having each two four-
core processors Intel Xeon 5345 EM64T (“Clovertown”) 2.33 GHz, heterogeneous CC “Academician
V.M. Matrosov” having 110 two-core nodes with 16-core processors AMD Opteron 6276 2.3 GHz
(“Interlagos”) based on the “Bulldozer” x86 64-microarchitecture and a node with graphic pro-
cessors NVidia C2070 (“Fermi”), heterogeneous CC with GPU NVidia “Tesla” comprising four
four-core processors Intel Xeon X5570 (“Nehalem”) and 8 GPU NVidia “Tesla” C1060 with the
total number of cores equal to 1920.

5. CONCLUSIONS

The present paper considered the service-oriented methods and tools to control the problem-
oriented distributed computations in the cluster Grid-system integrated with the traditional meta-
planners and local managers of the resources of the Grid-system nodes, including the original meth-
ods for conversion into the computing jobs of the user requests to the service-oriented environment,
classification of jobs and decomposition of the environment resources according to the jobs classes,
diverse multiagent tools for control of computations, new high-level framework for generation of
the specifications and construction of the interfaces of the service-oriented applications.

The listed above methods and tools have some distinctions. First, they enable development and
execution of the application services in different modes: control of computations both at the level of
individual applications and at the level of job flows, allocation of resources required for execution of
the service operations by special agents or traditional local resource managers, and use of static or
dynamic planning of computations. Second, generation of the agents’ VAC operating at the level of
applications enables one to represent as the Grid-service some system functions of the applications,
in particular, planning of computations, resource allocation and monitoring, determination of the
job state, allowance to the specificity of the knowledge domain of problem solution in the course
computation control.
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